Nielsen equivalence in a class of random groups
نویسندگان
چکیده
منابع مشابه
Nielsen Equivalence in Small Cancellation Groups
Let G be a group given by the presentation 〈a1, . . . , ak , b1, . . . bk | ai = ui(b̄), bi = vi(ā) for 1 ≤ i ≤ k〉, where k ≥ 2 and where the ui ∈ F (b1, . . . , bk) and wi ∈ F (a1, . . . , ak) are random words. Generically such a group is a small cancellation group and it is clear that (a1, . . . , ak) and (b1, . . . , bk) are generating n-tuples for G. We prove for generic choices of u1, . . ....
متن کاملThe graph of equivalence classes and Isoclinism of groups
Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$. In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$, where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$. We introduce a new graph determined ...
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Topology
سال: 2016
ISSN: 1753-8416,1753-8424
DOI: 10.1112/jtopol/jtw001